class List[A] is Seq[A]
"""
A doubly linked list.
The following is paraphrased from [Wikipedia](https://en.wikipedia.org/wiki/Doubly_linked_list).
A doubly linked list is a linked data structure that consists of a set of sequentially
linked records called nodes (implemented in Pony via the collections.ListNode class). Each
node contains four fields: two link fields (references to the previous and to the next node in
the sequence of nodes), one data field, and the reference to the List in which it resides. A doubly
linked list can be conceptualized as two singly linked lists formed from the same data items, but
in opposite sequential orders.
As you would expect. functions are provided to perform all the common list operations such as
creation, traversal, node addition and removal, iteration, mapping, filtering, etc.
## Example program
There are a _lot_ of functions in List. The following code picks out a few common examples.
It outputs:
A new empty list has 0 nodes.
Adding one node to our empty list means it now has a size of 1.
The first (index 0) node has the value: A single String
A list created by appending our second single-node list onto our first has size: 2
The List nodes of our first list are now:
A single String
Another String
Append *moves* the nodes from the second list so that now has 0 nodes.
A list created from an array of three strings has size: 3
First
Second
Third
Mapping over our three-node list produces a new list of size: 3
Each node-value in the resulting list is now far more exciting:
First BOOM!
Second BOOM!
Third BOOM!
Filtering our three-node list produces a new list of size: 2
Second BOOM!
Third BOOM!
The size of our first partitioned list (matches predicate): 1
The size of our second partitioned list (doesn't match predicate): 1
Our matching partition elements are:
Second BOOM!
```pony
use "collections"
actor Main
new create(env:Env) =>
// Create a new empty List of type String
let my_list = List[String]()
env.out.print("A new empty list has " + my_list.size().string() + " nodes.") // 0
// Push a String literal onto our empty List
my_list.push("A single String")
env.out.print("Adding one node to our empty list means it now has a size of "
+ my_list.size().string() + ".") // 1
// Get the first element of our List
try env.out.print("The first (index 0) node has the value: "
+ my_list.index(0)?()?.string()) end // A single String
// Create a second List from a single String literal
let my_second_list = List[String].unit("Another String")
// Append the second List to the first
my_list.append_list(my_second_list)
env.out.print("A list created by appending our second single-node list onto our first has size: "
+ my_list.size().string()) // 2
env.out.print("The List nodes of our first list are now:")
for n in my_list.values() do
env.out.print("\t" + n.string())
end
// NOTE: this _moves_ the elements so second_list consequently ends up empty
env.out.print("Append *moves* the nodes from the second list so that now has "
+ my_second_list.size().string() + " nodes.") // 0
// Create a third List from a Seq(ence)
// (In this case a literal array of Strings)
let my_third_list = List[String].from(["First"; "Second"; "Third"])
env.out.print("A list created from an array of three strings has size: "
+ my_third_list.size().string()) // 3
for n in my_third_list.values() do
env.out.print("\t" + n.string())
end
// Map over the third List, concatenating some "BOOM!'s" into a new List
let new_list = my_third_list.map[String]({ (n) => n + " BOOM!" })
env.out.print("Mapping over our three-node list produces a new list of size: "
+ new_list.size().string()) // 3
env.out.print("Each node-value in the resulting list is now far more exciting:")
for n in new_list.values() do
env.out.print("\t" + n.string())
end
// Filter the new list to extract 2 elements
let filtered_list = new_list.filter({ (n) => n.string().contains("d BOOM!") })
env.out.print("Filtering our three-node list produces a new list of size: "
+ filtered_list.size().string()) // 2
for n in filtered_list.values() do
env.out.print("\t" + n.string()) // Second BOOM!\nThird BOOM!
end
// Partition the filtered list
let partitioned_lists = filtered_list.partition({ (n) => n.string().contains("Second") })
env.out.print("The size of our first partitioned list (matches predicate): " + partitioned_lists._1.size().string()) // 1
env.out.print("The size of our second partitioned list (doesn't match predicate): " + partitioned_lists._2.size().string()) // 1
env.out.print("Our matching partition elements are:")
for n in partitioned_lists._1.values() do
env.out.print("\t" + n.string()) // Second BOOM!
end
```
"""
var _head: (ListNode[A] | None) = None
var _tail: (ListNode[A] | None) = None
var _size: USize = 0
new create(len: USize = 0) =>
"""
Always creates an empty list with 0 nodes, `len` is ignored.
Required method for `List` to satisfy the `Seq` interface.
```pony
let my_list = List[String]
```
"""
None
new unit(a: A) =>
"""
Creates a list with 1 node of element.
```pony
let my_list = List[String].unit("element")
```
"""
push(consume a)
new from(seq: Array[A^]) =>
"""
Creates a list equivalent to the provided Array (both node number and order are preserved).
```pony
let my_list = List[String].from(["a"; "b"; "c"])
```
"""
for value in seq.values() do
push(consume value)
end
fun ref reserve(len: USize) =>
"""
Do nothing
Required method for `List` to satisfy the `Seq` interface.
"""
None
fun size(): USize =>
"""
Returns the number of items in the list.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
my_list.size() // 3
```
"""
_size
fun apply(i: USize = 0): this->A ? =>
"""
Get the i-th element, raising an error if the index is out of bounds.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.apply(1)? end // "b"
```
"""
index(i)?()?
fun ref update(i: USize, value: A): A^ ? =>
"""
Change the i-th element, raising an error if the index is out of bounds, and
returning the previous value.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.update(1, "z")? end // Returns "b" and List now contains ["a"; "z"; "c"]
```
"""
index(i)?()? = consume value
fun index(i: USize): this->ListNode[A] ? =>
"""
Gets the i-th node, raising an error if the index is out of bounds.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.index(0)? end // Returns a ListNode[String] containing "a"
```
"""
if i >= _size then
error
end
var node = _head as this->ListNode[A]
var j = USize(0)
while j < i do
node = node.next() as this->ListNode[A]
j = j + 1
end
node
fun ref remove(i: USize): ListNode[A] ? =>
"""
Remove the i-th node, raising an error if the index is out of bounds, and
returning the removed node.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.remove(0)? end // Returns a ListNode[String] containing "a" and List now contains ["b"; "c"]
```
"""
index(i)? .> remove()
fun ref clear() =>
"""
Empties the list.
"""
_head = None
_tail = None
_size = 0
fun head(): this->ListNode[A] ? =>
"""
Show the head of the list, raising an error if the head is empty.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.head()? end // Returns a ListNode[String] containing "a"
```
"""
_head as this->ListNode[A]
fun tail(): this->ListNode[A] ? =>
"""
Show the tail of the list, raising an error if the tail is empty.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.tail()? end // Returns a ListNode[String] containing "c"
```
"""
_tail as this->ListNode[A]
fun ref prepend_node(node: ListNode[A]) =>
"""
Adds a node to the head of the list.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let new_head = ListNode[String]("0")
my_list.prepend_node(new_head) // ["0", "a"; "b"; "c"]
```
"""
match _head
| let head': ListNode[A] =>
head'.prepend(node)
else
_set_both(node)
end
fun ref append_node(node: ListNode[A]) =>
"""
Adds a node to the tail of the list.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let new_tail = ListNode[String]("0")
my_list.append_node(new_head) // ["a"; "b"; "c", "0"]
```
"""
match _tail
| let tail': ListNode[A] =>
tail'.append(node)
else
_set_both(node)
end
fun ref append_list(that: List[A]) =>
"""
Empties the provided List by appending all elements onto the receiving List.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = List[String].from(["d"; "e"; "f"])
my_list.append_list(other_list) // my_list is ["a"; "b"; "c"; "d"; "e"; "f"], other_list is empty
```
"""
if this isnt that then
while that._size > 0 do
try append_node(that.head()?) end
end
end
fun ref prepend_list(that: List[A]) =>
"""
Empties the provided List by prepending all elements onto the receiving List.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = List[String].from(["d"; "e"; "f"])
my_list.prepend_list(other_list) // my_list is ["d"; "e"; "f"; "a"; "b"; "c"], other_list is empty
```
"""
if this isnt that then
while that._size > 0 do
try prepend_node(that.tail()?) end
end
end
fun ref push(a: A) =>
"""
Adds a new tail value.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
my_list.push("d") // my_list is ["a"; "b"; "c"; "d"]
```
"""
append_node(ListNode[A](consume a))
fun ref pop(): A^ ? =>
"""
Removes the tail value, raising an error if the tail is empty.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.pop() end // Returns "c" and my_list is ["a"; "b"]
```
"""
tail()? .> remove().pop()?
fun ref unshift(a: A) =>
"""
Adds a new head value.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
my_list.unshift("d") // my_list is ["d"; "a"; "b"; "c"]
```
"""
prepend_node(ListNode[A](consume a))
fun ref shift(): A^ ? =>
"""
Removes the head value, raising an error if the head is empty.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
try my_list.shift() end // Returns "a" and my_list is ["b"; "c"]
```
"""
head()? .> remove().pop()?
fun ref append(
seq: (ReadSeq[A] & ReadElement[A^]),
offset: USize = 0,
len: USize = -1)
=>
"""
Append len elements from a sequence, starting from the given offset.
When len is -1, all elements of sequence are pushed.
Does not remove elements from sequence.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = List[String].from(["d"; "e"; "f"])
my_list.append(other_list) // my_list is ["a"; "b"; "c"; "d"; "e"; "f"], other_list is unchanged
```
"""
if offset >= seq.size() then
return
end
let copy_len = len.min(seq.size() - offset)
reserve(_size + copy_len)
let cap = copy_len + offset
var i = offset
try
while i < cap do
push(seq(i)?)
i = i + 1
end
end
fun ref concat(iter: Iterator[A^], offset: USize = 0, len: USize = -1) =>
"""
Add len iterated elements to the tail of the list, starting from the given
offset.
When len is -1, all elements of iterator are pushed.
Does not remove elements from iterator.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = List[String].from(["d"; "e"; "f"])
my_list.concat(other_list.values()) // my_list is ["a"; "b"; "c"; "d"; "e"; "f"], other_list is unchanged
```
"""
try
for i in Range(0, offset) do
if iter.has_next() then
iter.next()?
else
return
end
end
for i in Range(0, len) do
if iter.has_next() then
push(iter.next()?)
else
return
end
end
end
fun ref truncate(len: USize) =>
"""
Pop tail elements until the list is len size.
If the list is already smaller than len, do nothing.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
my_list.truncate(1) // my_list is ["a"]
```
"""
try
while _size > len do
pop()?
end
end
fun clone(): List[this->A!]^ =>
"""
Clone all elements into a new List.
Note: elements are not copied, an additional reference to each element is created in the new List.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.clone() // my_list is ["a"; "b"; "c"], other_list is ["a"; "b"; "c"]
```
"""
let out = List[this->A!]
for v in values() do
out.push(v)
end
out
fun map[B](f: {(this->A!): B^} box): List[B]^ =>
"""
Builds a new `List` by applying a function to every element of the `List`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.map[String]( {(s: String): String => "m: " + s } ) // other_list is ["m: a"; "m: b"; "m: c"]
```
"""
try
_map[B](head()?, f, List[B])
else
List[B]
end
fun _map[B](
ln: this->ListNode[A],
f: {(this->A!): B^} box,
acc: List[B])
: List[B]^
=>
"""
Private helper for `map`, recursively working with `ListNode`s.
"""
try acc.push(f(ln()?)) end
try
_map[B](ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun flat_map[B](f: {(this->A!): List[B]} box): List[B]^ =>
"""
Builds a new `List` by applying a function to every element of the `List`,
producing a new `List` for each element, then flattened into a single `List`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.flat_map[String]( {(s: String): List[String] => List[String].from( ["m"; s] )} ) // other_list is ["m"; "a"; "m"; "b"; "m"; c"]
```
"""
try
_flat_map[B](head()?, f, List[B])
else
List[B]
end
fun _flat_map[B](
ln: this->ListNode[A],
f: {(this->A!): List[B]} box,
acc: List[B]): List[B]^
=>
"""
Private helper for `flat_map`, recursively working with `ListNode`s.
"""
try acc.append_list(f(ln()?)) end
try
_flat_map[B](ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun filter(f: {(this->A!): Bool} box): List[this->A!]^ =>
"""
Builds a new `List` with those elements that satisfy the predicate.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.filter( {(s: String): Bool => s == "b" } ) // other_list is ["b"]
```
"""
try
_filter(head()?, f, List[this->A!])
else
List[this->A!]
end
fun _filter(
ln: this->ListNode[A],
f: {(this->A!): Bool} box,
acc: List[this->A!]): List[this->A!]
=>
"""
Private helper for `filter`, recursively working with `ListNode`s.
"""
try
let cur = ln()?
if f(cur) then acc.push(cur) end
end
try
_filter(ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun fold[B](f: {(B!, this->A!): B^} box, acc: B): B =>
"""
Folds the elements of the `List` using the supplied function.
On the first iteration, the `B` argument in `f` is the value `acc`,
on the second iteration `B` is the result of the first iteration,
on the third iteration `B` is the result of the second iteration, and so on.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let folded = my_list.fold[String]( {(str: String, s: String): String => str + s }, "z") // "zabc"
```
"""
let h = try
head()?
else
return acc
end
_fold[B](h, f, consume acc)
fun _fold[B](
ln: this->ListNode[A],
f: {(B!, this->A!): B^} box,
acc: B)
: B
=>
"""
Private helper for `fold`, recursively working with `ListNode`s.
"""
let nextAcc: B = try f(acc, ln()?) else consume acc end
let h = try
ln.next() as this->ListNode[A]
else
return nextAcc
end
_fold[B](h, f, consume nextAcc)
fun every(f: {(this->A!): Bool} box): Bool =>
"""
Returns `true` if every element satisfies the predicate, otherwise returns `false`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let all_z = my_list.every( {(s: String): Bool => s == "z"} ) // false
```
"""
try
_every(head()?, f)
else
true
end
fun _every(ln: this->ListNode[A], f: {(this->A!): Bool} box): Bool =>
"""
Private helper for `every`, recursively working with `ListNode`s.
"""
try
if not(f(ln()?)) then
false
else
_every(ln.next() as this->ListNode[A], f)
end
else
true
end
fun exists(f: {(this->A!): Bool} box): Bool =>
"""
Returns `true` if at least one element satisfies the predicate, otherwise returns `false`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let b_exists = my_list.exists( {(s: String): Bool => s == "b"} ) // true
```
"""
try
_exists(head()?, f)
else
false
end
fun _exists(ln: this->ListNode[A], f: {(this->A!): Bool} box): Bool =>
"""
Private helper for `exists`, recursively working with `ListNode`s.
"""
try
if f(ln()?) then
true
else
_exists(ln.next() as this->ListNode[A], f)
end
else
false
end
fun partition(
f: {(this->A!): Bool} box)
: (List[this->A!]^, List[this->A!]^)
=>
"""
Builds a pair of `List`s, the first of which is made up of the elements
satisfying the predicate and the second of which is made up of
those that do not.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
(let lt_b, let gt_b) = my_list.partition( {(s: String): Bool => s < "b"} ) // lt_b is ["a"], while gt_b is ["b"; "c"]
```
"""
let l1 = List[this->A!]
let l2 = List[this->A!]
for item in values() do
if f(item) then l1.push(item) else l2.push(item) end
end
(l1, l2)
fun drop(n: USize): List[this->A!]^ =>
"""
Builds a `List` by dropping the first `n` elements.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.drop(1) // ["b"; "c"]
```
"""
let l = List[this->A!]
if size() > n then
try
var node = index(n)?
for i in Range(n, size()) do
l.push(node()?)
node = node.next() as this->ListNode[A]
end
end
end
l
fun take(n: USize): List[this->A!] =>
"""
Builds a `List` by keeping the first `n` elements.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.drop(1) // ["a"]
```
"""
let l = List[this->A!]
if size() > 0 then
try
var node = head()?
for i in Range(0, n.min(size())) do
l.push(node()?)
node = node.next() as this->ListNode[A]
end
end
end
l
fun take_while(f: {(this->A!): Bool} box): List[this->A!]^ =>
"""
Builds a `List` of elements satisfying the predicate, stopping at the first `false` return.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.take_while( {(s: String): Bool => s < "b"} ) // ["a"]
```
"""
let l = List[this->A!]
if size() > 0 then
try
var node = head()?
for i in Range(0, size()) do
let item = node()?
if f(item) then l.push(item) else return l end
node = node.next() as this->ListNode[A]
end
end
end
l
fun reverse(): List[this->A!]^ =>
"""
Builds a new `List` by reversing the elements in the `List`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let other_list = my_list.reverse() // ["c"; "b"; "a"]
```
"""
try
_reverse(head()?, List[this->A!])
else
List[this->A!]
end
fun _reverse(ln: this->ListNode[A], acc: List[this->A!]): List[this->A!]^ =>
"""
Private helper for `reverse`, recursively working with `ListNode`s.
"""
try acc.unshift(ln()?) end
try
_reverse(ln.next() as this->ListNode[A], acc)
else
acc
end
fun contains[B: (A & HasEq[A!] #read) = A](a: box->B): Bool =>
"""
Returns `true` if the `List` contains the provided element, otherwise returns `false`.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let contains_b = my_list.contains[String]("b") // true
```
"""
try
_contains[B](head()?, a)
else
false
end
fun _contains[B: (A & HasEq[A!] #read) = A](
ln: this->ListNode[A],
a: box->B)
: Bool
=>
"""
Private helper for `contains`, recursively working with `ListNode`s.
"""
try
if a == ln()? then
true
else
_contains[B](ln.next() as this->ListNode[A], a)
end
else
false
end
fun nodes(): ListNodes[A, this->ListNode[A]]^ =>
"""
Return an iterator on the nodes in the `List` in forward order.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let nodes = my_list.nodes() // node with "a" is before node with "c"
```
"""
ListNodes[A, this->ListNode[A]](_head)
fun rnodes(): ListNodes[A, this->ListNode[A]]^ =>
"""
Return an iterator on the nodes in the `List` in reverse order.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let rnodes = my_list.rnodes() // node with "c" is before node with "a"
```
"""
ListNodes[A, this->ListNode[A]](_head, true)
fun values(): ListValues[A, this->ListNode[A]]^ =>
"""
Return an iterator on the values in the `List` in forward order.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let values = my_list.values() // value "a" is before value "c"
```
"""
ListValues[A, this->ListNode[A]](_head)
fun rvalues(): ListValues[A, this->ListNode[A]]^ =>
"""
Return an iterator on the values in the `List` in reverse order.
```pony
let my_list = List[String].from(["a"; "b"; "c"])
let rvalues = my_list.rvalues() // value "c" is before value "a"
```
"""
ListValues[A, this->ListNode[A]](_head, true)
fun ref _increment() =>
"""
Private method to control mutating `_size` field.
"""
_size = _size + 1
fun ref _decrement() =>
"""
Private method to control mutating `_size` field.
"""
_size = _size - 1
fun ref _set_head(head': (ListNode[A] | None)) =>
"""
Private method to control mutating `_head` field.
"""
_head = head'
fun ref _set_tail(tail': (ListNode[A] | None)) =>
"""
Private method to control mutating `_tail` field.
"""
_tail = tail'
fun ref _set_both(node: ListNode[A]) =>
"""
Private method to set both `_head` and `_tail` to the same node,
creating a `List` with a `_size` of 1.
"""
node._set_list(this)
_head = node
_tail = node
_size = 1
class ListNodes[A, N: ListNode[A] #read] is Iterator[N]
"""
Iterate over the nodes in a `List`.
"""
var _next: (N | None)
let _reverse: Bool
new create(head: (N | None), reverse: Bool = false) =>
"""
Build the iterator over nodes.
`reverse` of `false` iterates forward, while
`reverse` of `true` iterates in reverse.
"""
_next = head
_reverse = reverse
fun has_next(): Bool =>
"""
Indicates whether there are any nodes remaining in the iterator.
"""
_next isnt None
fun ref next(): N ? =>
"""
Return the next node in the iterator, advancing the iterator by one element.
Order of return is determined by `reverse` argument during creation.
"""
match _next
| let next': N =>
if _reverse then
_next = next'.prev()
else
_next = next'.next()
end
next'
else
error
end
class ListValues[A, N: ListNode[A] #read] is Iterator[N->A]
"""
Iterate over the values in a `List`.
"""
var _next: (N | None)
let _reverse: Bool
new create(head: (N | None), reverse: Bool = false) =>
"""
Build the iterator over values.
`reverse` of `false` iterates forward, while
`reverse` of `true` iterates in reverse.
"""
_next = head
_reverse = reverse
fun has_next(): Bool =>
"""
Indicates whether there are any values remaining in the iterator.
"""
_next isnt None
fun ref next(): N->A ? =>
"""
Return the next node in the iterator, advancing the iterator by one element.
Order of return is determined by `reverse` argument during creation.
"""
match _next
| let next': N =>
if _reverse then
_next = next'.prev()
else
_next = next'.next()
end
next'()?
else
error
end